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Introduction

* Wide distribution of damage
parameters for a fleet of airplanes

 Single airplane or plate may have
much narrower distribution

 Structural health monitoring data can
be used to identify damage
parameters for a specific panel
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— Objective

Noisy SHM inspection data are used
INn Bayesian updating to identify
damage growth parameters. More
accurate parameters lead to better
remaining useful life estimation.

Image-Based Uncertainty
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« SHM Response Model
R(n)=8(n)® D(n)

« Measure Model
M[¥(n)]= Ax

= X | Y (M) | = X0 [ ¥ (1) ]
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Online/Offline SHM results (detected responses or imaging results) continually
reflect probabilistic information of the damage Iin the airframe structures

The 3-step explicit method extracts probabilistic damage quantification, providing
Indispensible initiation for the following Bayesian based damage prognosis

Fatigue Crack Growth and Measurement Model

« Through-the-thickness crack of a fuselage panel (Al 7075-T651)

« Paris model with repeated pressurization cycles

+ Crack size after N cycles affV®

« Simulated SHM data: random readings from a model -
that includes unknown (but single valued) bias b
 and random noise from equipment and environment, v _

 Measured crack size after N cycles:

AK = oV 7a J:%

C, m: damage parameters

Bayesian Updating for Parameter Distribution

« Updating damage growth parameter
distribution using Bayes' theorem and
SHM data:

« f.. : assumed (or prior) probability
density function, initial distribution from

the range of test data: fox(m) ~ U(3.3,4.3) 500:

* L. : likelihood function, likelihood to
nave the observed crack growth
petween two inspections for a given m
(includes uncertainty In noise and

applied pressure)

* Progressive reduction of uncertainty Iin
damage growth parameter
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Limitations on Bayesian Updating

« Although bias is deterministic, it is
unknown to the user (uncertain)

e Bayesian updating ignored the bias In
likelihood calculation because it does
not affect much the RUL estimation

« Bayesian updating gives satisfactory
results but it did not handle well
uncertainty in bias
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ldentification Using Least Square Method
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Least Square-Based Bayesian Method

* Uses least square fit as a pre-

processor to reduce the effect of bias 2000
and noise 4500
4000 |

» Applies Bayesian updating on the least E‘:_:L,' 3500 }
sguare fit to estimate the distribution of ‘E 3000}
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« More stable estimate, converges faster .~ 1500
remaining on the conservative side ® 000l
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Conclusions and Future Work
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4500 E‘S;Ef ;Z;E;?:HE:DE f’jﬂ « Substantial narrowing of the

4000 Compnedmeinod, b=-2, V=1 uncertainty in damage growth

3500 parameters using noisy SHM data

3000 « Combining Bayesian updating and least

2500 square fit gives better results than
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